Investigating the Beaufort Sea Marginal Ice Zone
with Robotic Technology

| Cralg Lee (APL-UW), Lee Freitag (WHOI), Martin Doble (LOV), Wieslaw Maslowski (NPS), Tim Stanton (NPS), Jim Thomson
(APL-UW), Mary-Louise Timmermans (Yale) and Jeremy Wilkinson (BAS)

Ice Mass Balance Buoys- Wilkinson (BAS), Hwang (SAMS), Maksym (WHOI), Richter-Menge (CRREL)
Wave Buoys- Wadhams (Cambridge), Doble (LOV)

* Tightly integrated program.

Surface Wave Measurements- Thomson (APL-UW)

Autonomous Ocean Flux Buoys- Stanton, Shaw (NPS) * |nte rdependent elements.

Autonomous Gliders- Lee, Rainville, Gobat (APL-UW) o Exceptional CO”aboraﬁOn

Biogechemical Measurements (Perry, U. Maine)

Acoustic Navigation and Wavegliders- Freitag (WHOI) e Stro Ng team effort.
Profiling Floats- Owens, Jayne (WHOI)

Ice-Tethered Profilers- Toole, Krishfield, Cole, Thwaites (WHOI), Timmermans (Yale)
Remote Sensing- Graber (CSTARS, U. Miami), Hwang (SAMS)

MIZMAS model- Zhang, Schweiger, Steel (APL-UW)

Regional Arctic Climate System Model- Maslowski, Roberts, Cassano, Hughes (NPS)
Arctic Nowcast/Forecast Model- Posey, Allard, Brozena, Gardner (NRL)

Melt Ponds, Biology, Biogeochemistry- Kang, Yang & colleagues (Korean Polar Research Institute)
External Collaborations- NRL, NASA, NOAA, ESA



* 40% MYI decline since 1980
Regime shift: first-year ice dominates
over multi-year ice.

2007 2000 2011
» ASCAT

U Extent + U Thickness = U sea ice volume

Quantity and quality of sea ice impact processes and feedbacks.



Models Struggle to Reproduce Dramatic Reduction

in Summertime Sea Ice Extent

* 50% reduction in summer sea ice extent
* 7 million km? in the 1970s
* 3.4 million km?in 2012
* Wintertime sea ice maximum declining.
* Decline primarily thermodynamic, other
processes may increase in importance.

Minimum Sea Ice Extent

Sea Ice Extent
09/16/2012

Sep 2012
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National Snow and Ice Data Center, Boulder, CO

Improve Predictability — Refine Models
* Process-level investigations

; * Improve physics, parameterizations
-y B « Continued testing against sustained
N observations

Refine physics at the ice edge — between pack
B median ice and open water — Marginal Ice Zone

1979-2000
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Science

1.

4.

Understand the physics that control sea ice breakup and melt in and
around the ice edge (Marginal Ice Zone - MIZ).

. Characterize changes in physics associated with decreasing ice/

increasing open water.

. Explore feedbacks in the ice-ocean-atmosphere system that might

increase/decrease the speed of sea ice decline.

Collect a benchmark dataset for refining and testing models.

Technical

1.

Develop and demonstrate new robotic networks for collecting
observations in, under and around sea ice.

. Improve interpretation of satellite imagery.

. Improve numerical models to enhance seasonal forecast capability.
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Challenges

1. Multiple Domains: Simultaneous measurements of
atmosphere, ice and upper ocean.

2. Resolution: Resolve temporal evolution and small-
scale spatial variability (4-D physics).

3. Persistence: Sample entire melt season (Jun — Sep).
Physics change as a function of open water extent.

4. Access: Measurements in full- and partial- ice cover.

5. Scalability: Large number of platforms provide
distributed sampling, mitigate risk.
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Assets Deploié{ y. i
« 25 Ice Mass Balance Buoys .
* 25 Wave Buoys
« 5 Weather Stations -
« 5 |ce-Tethered Profilers
* 5 Flux Buoys
* 10 Acoustic Nav Buoys™ : |

“  Polar

* 4 Seagliders AWAC i Profiling
* 10 ARGO floats Mooring | Float
* 2 Wavegliders

-3swiFtfoas . 90+ Distinct Observing Assets




Ice-based array deployed by
aircraft in April (full ice cover).

Acoustic Navigation Source

Drifters & gliders deployed in July,
immediately after open water
Covir om0 forms along the coast.

SWIFT

Wave Glider
» drift start positions
"July 1 end

AN
b
N
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Risk Mitigation: 20% of assets held for deployment in
August at northernmost site using Korean icebreaker Araon.

Array drifts with ice
pack- follow evolution

along the line.

Maintains focus on
MIZ by following
northward retreat of
ice edge.

Ice-based array
samples ice-covered
area.

Drifting platforms in
open- and ice-covered
water.

Mobile platforms span
ice-free, MIZ and ice-
covered regions.

Follow MIZ retreat
northward through
September 2014.



Receiver on Glider:

Transmit every 4
hours, fixed times.
 GPS synched.
* 900 Hz carrier.
~1 bps data rate.

Measures time, computes range.
Decodes location of buoy.

Ranges and source locations used to
compute real-time position.

How Does it Work?

|lce-based sensor array is mobile.

Therefore must transmit source
positions to allow real-time geo-
location by gliders.

Data transmission capability also
means commands can be sent to

glider.

Glider
Receiver
Board

Glider Receiver
Hydrophone




e Central Arctic temperature profile
has perpetual cold surface layer.
. * Sound reflects from the ice,
suffering loss at each bounce.
~» Range limited by number of

reflections.
Beaufort
£\ < Canada Basin
Ray Paths — Classic Profile
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Temperature (Deg. C)

DEPTH (METERS)

»  Central Beaufort and Chukchi have warm

i o S ?"&\ o layer of coastal and Bering Sea
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Calculated Buoy-Buoy Range Error
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Buoy to buoy performance:

Ranges to 400+ km, due to
ducted propagation.

Standard Deviation of 40-60 m.

Glider performance:
To 100 km at all depths.
To 400 km when in duct.
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'Fast & Light' Ice Camp Logistics

60+ assets deployed over Personnel = 6 persons + dog .
e e * 3 x scientists/engineers P
+ 2 Twin Otters + 1 Bell 412 o XHielisepier ISR e
* 1 week setup, 1 week ops R
\%‘-’P; »
ot
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Ice mass balance . _
Bl ot th buoys .~ Accommodation tents
utomatic weather

station

Wave Buoy —><\>> Helicopter site:
. fuel + equipment
/, ‘
-
/ / fhe
3 Kitchen tent
= Autonomous Ice tethered
Fp® flux buoy profiler

Twin Otter Runway
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Deploy: % Recover:

4 seagliders v, 4 seagliders

3 SWIFT buoys — 3 SWIFT buoys

2 wavegliders " 1 wavegliders

Ice edge measurements Ice edge measurements

(turbulence wave attenuation) (CTD and wave attenuation)
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*  Dedicated support from National Ice Center, meteorologicalreports & drift forecasts inform

planning & targeting.
* Agile targeting to follow drifting instruments, respond to rapidly-evolving MIZ
* Targeting strategy a.nd protocols developed & tested prior to main program.
* Small targeting team (remote sensing, models, observations) led by Bill Shaw
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To understand the processes that govern sea ice melt:
* |ce mass balance.
« Sea ice dynamics (locally and regionally).
* Open water fraction/floe size distribution.
« Surface wave penetration and dissipation.
« Meteorological forcing.
* Upper ocean variability.

Ice extent 2014
April August October

Courtesy: www.seaice.dk



Sea ice mass balance @NP

Revolutionary Research . . . Relevant Results

Cannot directly measure ice thickness from space
Need autonomous platforms

20 x ICE MASS
BALANCE BUOYS

Depth (cm)




Sea ice dynamics @N=

Revolutionary Research . . . Relevant Results

Local: GPS is the key Regional: Satellites are the key

May 8

TerraSAR-X 20140508162358 SHH

o Understanding ice dynamics leads to a better
knowledge of ice deformation processes.

o Need information on local and regional level



arch ... Relevant Rosults

Ice Floe Map

« Complex algorithms
needed to separate floes.

* Not fully automated
* Floe size distribution
Fraction of open water

start Start

&Y o

o

Can be applied to both high g \w __ \Esg@?a 3 i
resolution radar and visible g NT TN e

satellite imagery. wed [ e T

-

<"



Under the ice On the ice In open water (and ice)

g % |
|-
WHOI BGEP mooring “A” “A— A SWIFT buoys wa\(eglider
75N, 150 W Wave buoys (drifting) (piloted)

(drifting)



* Fetch-limited waves in the Beaufort sea
are rapidly attenuated at ice edge,
because wavelengths are short

(83}

ght [m_

o

* Ice effectively protects itself from the
waves, like a beach protects the coast...
and thus interior of ice pack is likely
controlled by thermodynamics

Waves hei
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ey
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— Open water

— Open water

— Open water
O/10 ice
1/10 ice

—2/10 ice

Wave energy [m2/Hz]

0.5 2 4
Frequency [HZz] Turbulence [W/kg} 107



Significant wave height and peak direction (for Hs>0.5m)

Low ice conc.

increasing ice

high ice conc.

I N S ;_;_.L___-,JJN N
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* Waves strongly modulated by
even small concentrations of
sea ice.

Waves in sea ice only after
early September, when there is
significant open water south.

Episodic wave events, but seen
at multiple sites.
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Velocity shear spectra (s ! / cpm)
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Velocity shear spectra (s™' / cpm)
o

107 107" 107 10
Vertical wavenumber (cpm) Vertical wavenumber (cpm)

Ice-Tethered Profilers at C2 and C4
70-250 m depth

IW energy increases from spring into summer
IW energy appears to increase with increasing open water fraction.
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Freeze-up (26 Sep 2014)
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Melt-Out Melt-Out (5 Sep 2014)

*  Warmer, fresher out
of the ice.

e Thickening isopycnal
layer at ice edge.

* Ice-edge upwelling?

-40 * |ce-edge mixing?

Freeze-up

-200  -150
CHLOROPHYLL

Radarsat
26 Sept. 2014

Near-surface temperature
maxima formation?

Sharp contrast in Y
chlorophyll across MIZ. ‘ : T A e

distance from the ice edge [km]
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Early Results

Science

1.

In this year, waves do not appear to have played a large role in
breakup of the pack- thermodynamics dominate.

. Surface waves attenuate rapidly upon encountering ice, even in

fractional cover.

. Signatures of lateral mixing and vertical exchange driven by small-

scale front and eddies near the ice ‘edge’.

4. Clear contrasts in chlorophyll distribution associated with ice ‘edge’.
Technical
1. Autonomous observing from pack ice, though the MIZ and into open

water spanning an entire melt season (March — October 2014).

. Under-ice glider operations using new, drifting broadband sources.

Acoustic receptions at 400+ km due to shallow sound channel
associated with Beaufort Sea near-surface temperature maximum.






rai [\=

Revolutionary Research . .. Relevant Results

Pack Ice

Open Water




Revolutionary Research . . . Relevant Results




Outline

1. Background — The changing Arctic

2. Objectives — Science and technology development
3. Emerging Physics of the Marginal Ice Zone

4. A New Approach — Light-weight logistics and
sustained, autonomous observing

5. The MIZ measurement program
1. Acoustic navigation
2. The changing wave climate
3. Seaice dynamics
4. Upper ocean physics and biology

6. Summary



Climate

* Global links... changes
in atmospheric
circulation linked to
heat and drought in
US and cold stormy

weather in Europe

Industry
* Shipping, oil/gas,
minerals, fisheries,

tourism...

Economics
* UK Stern Review on
the Economics of

Climate Change
(2006). £3.68 trillion

 The cost of Arctic
change?

Beriqg = Fastest routes
Strait for PC6 ships

w— Fastest routes
for OW ships

Arctic
Circle

0il and gas in the Arctic

Area north of the Arctic Circle has an estimated 90 billion barrels
of undiscovered oil.
FINLAND

Probability NORWAY

of finding oil, gas \ - "SWEDEN.
] : e "~.._ ICELAND
50-100

GREENLAND

&ﬂ“:
CANADA S
. S

By

“  Arctic accounts

for 13% of

undiscovered oil, 30%

of undiscovered natural
gas, 20% of undiscovered
natural gas liquids

Indigenous communities
* Loss of traditional way of life

Coastal changes
* Coastal erosion due to
enhanced wave energy

Environmental pressures
* Loss of habitat/species
* Increase in ocean acidification
* Change in ocean properties



A lot more open water in summer months
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*
Revolutionary Research . . . Relevant Results

* Enhanced endurance, reliability
* Compass calibration/check procedures for high-latitudes ops

* Ice detection- ice climatology, temperature, altimeter
* Enhanced autonomy with ‘ice ‘behaviors’

* Routine operations in full ice cover and marginal ice zone
e Acoustic communication for data transfer

e Broad Access
— Remote regions, full ice cover
—lce-ocean interface, marginal ice zone.
— Persistent sampling- long endurance

* Risk Mitigation
— Limited exposure to ice-ocean interface.
— Data return when open water available.

* Highly Adaptable
— Simple logistics.

— Real time reprogramming.

— Flexible sampling.
—Scalable.




Micro-temperature Seaglider

~  Luc Rainville and Craig Lee
Applied Physics Laboratory, U. of Washington

>

Extended (many months) dissipation
measurements from autonomous platforms.

Fully integrated system.
Does not affect flight and endurance.

Real-time data processing and transmission of
turbulence profile after each dive.

Data quality comparable to free-falling systems.

Successful 1-month deployment, 6-month
deployments in-progress (SPURS- 3 gliders).




Task Force Climate Change “Arctic Roadmap”:
*  Must have Arctic environmental information and predictions to support
investment and policy decisions, and future operations.

NORTHCOM:

*  Must improve ability to observe and predict the Arctic environment.

N2N6E CBA: Better Environmental Information

* Insufficient ability to provide oceanographic information, ice reports, accurate
navigation charts, meteorological analysis and forecasts

O How little sea ice will there be, and when will the key changes occur?
* Need better prediction capability underpinned by basic research.

0 How is the Arctic region as a whole going to be different?
* Need research into how the entire Arctic environmental system functions.

O What does the Navy need to know to operate in the Arctic?
* Need sustained observations and improved predictions of the state of the Arctic.

0 How will the changing Arctic affect the rest of the earth, and vice-versa?
* Need an Arctic environmental system model integrated within global prediction models
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With thanks to Dr. Sung-Ho Kang and Eun Jin Yang, Captain and crew of IBRV Araon,

Maritime Helicopters team: Eric Richard, Dave Guy and Howard Reed and the USEG
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